
J. Fluid Mech. (2007), vol. 591, pp. 481–494. c© 2007 Cambridge University Press

doi:10.1017/S0022112007008452 Printed in the United Kingdom

481

Nonlinear three-dimensional interfacial flows
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A configuration consisting of two superposed fluids bounded above by a free surface
is considered. Steady three-dimensional potential solutions generated by a moving
pressure distribution are computed. The pressure can be applied either on the interface
or on the free surface. Solutions of the fully nonlinear equations are calculated by
boundary-integral equation methods. The results generalize previous linear and weakly
nonlinear results. Fully localized gravity–capillary interfacial solitary waves are also
computed, when the free surface is replaced by a rigid lid.

1. Introduction
We consider a three-dimensional steady potential flow in which a given distribution

of pressure moves at constant velocity U on the interface between two fluids, with a
lighter fluid of density ρ2 lying above a heavier one of density ρ1. The lower fluid is
of infinite depth and the upper fluid layer is bounded above by a free surface. This
models, in an inverse way, interfacial flows past submerged bodies on the interface.
We also consider problems where the given pressure is applied on the free surface.

In the last half-century there have been a number of investigations of forced waves
which propagate at the interface of two fluids (see e.g. Hudimac 1961; Crapper 1967;
Keller & Munk 1970; Yih & Zhu 1989; Tulin & Miloh 1991; Avital & Miloh 1998).
Some authors have considered the effect of a free surface on the two-layer flow, such
as Yeung & Nguyen (1999) and Wey, Lu & Dai (2005).

It was shown that the wave system at the interface or at the free surface is
determined by a surface-wave mode and an internal-wave mode. There are also
experimental observations of the so-called ‘dead-water’ effect (first reported by Ekman
1904) and of narrow V-wakes in SAR images (see Hudimac 1961).

Most of these previous studies are either linear or weakly nonlinear. In this paper we
complement them by presenting fully nonlinear solutions. The numerical procedure
combines ideas developed by Forbes (1989), Părău & Vanden-Broeck (2002), Părău,
Vanden-Broeck & Cooker (2005a, b, 2007). This study involves integro-differential
equation formulations obtained by using Green’s second identity and the dynamic
boundary conditions.

Three-dimensional solitary interfacial waves are also computed when the upper
layer is bounded by a rigid lid. Both gravity and interfacial tension are included in
the dynamic boundary condition and the given pressure distribution is eliminated.
These waves have damped oscillations in the direction of propagation, as reported in
the two-dimensional case (Dias & Iooss 1996; Laget & Dias 1997; Calvo & Akylas
2003). The waves are also damped in the transverse direction. When the density
ratio R = ρ2/ρ1 is zero, the three-dimensional solitary interfacial waves reduce to
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Figure 1. Sketch of the problem.

free-surface solitary water waves which were studied by Părău et al. (2005a, b). Our
results are also consistent with those of Kim & Akylas (2006) who studied three-
dimensional solitary waves for a two-dimensional Benjamin equation. They derived
this equation by extending the one-dimensional Benjamin equation which models
interfacial waves when the upper layer is bounded by a rigid lid, the interfacial
tension is large and the two densities are nearly equal (see Benjamin 1992), and
allowing for weak transverse variations.

We present in § 2 computations of gravity flows generated by moving pressure
distributions on the interface and on the free surface. The problem is formulated in
§ 2.1, the numerical method is briefly described in § 2.2 and the numerical results are
presented in § 2.3. The three-dimensional capillary–gravity interfacial fully localized
solitary waves are discussed in § 3 and some conclusions are presented in § 4.

2. Two-layer gravity waves
2.1. Formulation

The fluids are assumed to be inviscid and incompressible and the flow to be irrotational
in both layers. There is no shear between the layers and the free surface, and interfacial
tensions are neglected. The subscript 1 refers to the lower fluid, and the subscript 2
to the upper layer. The lower layer is of infinite depth and the upper fluid, which
is bounded above by a free surface, has a rest equilibrium thickness h. We choose a
frame of reference moving with the disturbance (figure 1). We restrict our attention
to steady flows. We introduce Cartesian coordinates x, y, z with the z-axis directed
vertically upwards. We choose the level z = 0 on the undisturbed level of the interface
and the x-axis in the opposite direction of the velocity U . We denote by z = ζ (x, y)
the position of the interface and by z = ζs(x, y) + h the equation of the free surface.

The governing equations in each layer are the Laplace equations

�Φi = 0 (i = 1, 2), (2.1)

where Φi is the velocity potential in layer i. On the interface z = ζ (x, y), the kinematic
and dynamic conditions give

Φixζx + Φiyζy = Φiz (i = 1, 2), (2.2)

1
2
ρ1

(
Φ2

1x +Φ2
1y +Φ2

1z

)
− 1

2
ρ2

(
Φ2

2x +Φ2
2y +Φ2

2z

)
+(ρ1 −ρ2)gζ +pI = 1

2
(ρ1 −ρ2)U

2. (2.3)
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Here, ρi are the constant densities and g is the acceleration due to gravity. The pressure
distribution which models the disturbance at the interface is p = pI (specified below
as a function of position). Strictly speaking, pI is the imposed deviation from the
hydrostatic pressure term ρ2gh.

On the free surface z = ζs(x, y) + h, we have again the kinematic and dynamic
conditions

Φ2xζsx
+ Φ2yζsy

= Φ2z, (2.4)
1
2

(
Φ2

2x + Φ2
2y + Φ2

2z

)
+ g(ζs + h) + pF = 1

2
U 2 + gh, (2.5)

where pF is the pressure distribution which models the disturbance on the free surface.
The velocity and radiation boundary conditions at infinity are

(Φ1x, Φ1y, Φ1z) → (U, 0, 0) as z → −∞, (2.6)

no waves as x → −∞. (2.7)

We shall present in § 2.3, results for pI �= 0, pF = 0 (pressure applied on the interface)
and for pI = 0, pF �= 0 (pressure applied on the free surface). In both cases, we choose
for the non-zero pressure

p(x, y) =

⎧⎨
⎩P0 exp

(
L2

x2 − L2
+

L2

y2 − L2

)
, |x| < L and |y| < L,

0 otherwise.
(2.8)

Here, P0 is a constant and L defines the size of the support of the pressure. We
introduce dimensionless variables by using U as the unit velocity and L as the unit
length.

Combining (2.2) with (2.3), and (2.4) with (2.5), and using the chain rule we obtain

1

2

(
1 + ζ 2

x

)
φ2

1y +
(
1 + ζ 2

y

)
φ2

1x − 2ζxζyφ1xφ1y

1 + ζ 2
x + ζ 2

y

− R

2

(
1 + ζ 2

x

)
φ2

2y +
(
1 + ζ 2

y

)
φ2

2x − 2ζxζyφ2xφ2y

1 + ζ 2
x + ζ 2

y

+
1 − R

F 2
ζ + εP =

1 − R

2
, (2.9)

1

2

(
1 + ζ 2

sx

)
φ2

sy
+

(
1 + ζ 2

sy

)
φ2

sx
− 2ζsx

ζsy
φsx

φsy

1 + ζ 2
sx

+ ζ 2
sy

+
ζs

F 2
=

1

2
, (2.10)

where φi(x, y) = Φi(x, y, ζ (x, y)) (i = 1, 2), φs = Φ2(x, y, ζs(x, y) + H ), F = U/(gL)1/2

is the Froude number, R = ρ2/ρ1 is the density ratio, H =h/L is the relative thickness
of the upper layer, ε = P0/ρ1U

2 is the dimensionless magnitude of the pressure and
P = p/P0.

2.2. Numerical method

The numerical scheme is an extension to a two-fluid system of that used by Părău
& Vanden-Broeck (2002) for the computation of forced gravity waves in deep water
and by Părău et al. (2007) for forced interfacial gravity waves. It is based on a
desingularized boundary integral-equation method introduced by Landweber &
Macagno (1969) for the problem of uniform flow past an ellipsoid and generalized
by Forbes (1989) for three-dimensional gravity free-surface flows past a source.

The formulation involves applying in each fluid Green’s second identity to the
functions Φi − x (i = 1, 2) and G, where G(P, P ∗) is the three-dimensional free-space
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Figure 2. Sketch of the regions V1 and V2.

Green function

G(P, P ∗) =
1

4π

1

([x − x∗]2 + [y − y∗]2 + [z − z∗]2)1/2
, (2.11)

in the regions V1 and V2. Here, P = (x, y, z), P ∗ =(x∗, y∗, z∗) ∈ SI . The region V1

consists of a large-radius hemisphere bounded above by the interface SI , except for
a small hemisphere around the point P ∗, and the region V2 consists of a large-radius
cylinder bounded by the free surface SF and the interface SI , except for a small
hemisphere around the point P ∗ (see figure 2). Another integral equation is obtained
when P ∗ is on the free surface SF and Green’s second identity is applied to the region
V ′

2, which is the same as V2, except for a small hemisphere around the point P ∗ on
the free surface.

This yields the following equations

1
2
(Φ1(P

∗) − x∗) =

∫
SI

(Φ1(P ) − x)
∂G(P, P ∗)

∂n1

−G(P, P ∗)
∂(Φ1(P ) − x)

∂n1

dSP for P ∗ ∈ SI ,

1
2
(Φ2(P

∗) − x∗) =

∫
SI

(Φ2(P ) − x)
∂G(P, P ∗)

∂n2

−G(P, P ∗)
∂(Φ2(P ) − x)

∂n2

dSP

+

∫
SF

(Φ2(P ) − x)
∂G(P, P ∗)

∂ns

− G(P, P ∗)
∂(Φ2(P ) − x)

∂ns

dSP

for P ∗ ∈ SI , P
∗ ∈ SF , where ni (i =1, 2) is the normal vector at the interface pointing

into fluid i, and ns is the normal vector at the free surface.
The integro-differential equations are projected onto the Oxy-plane and the

singularities in the integrands are isolated by addition and subtraction of a function
whose integral can be evaluated in closed form (see Landweber & Macagno 1969;
Forbes 1989; Părău & Vanden-Broeck 2002; Părău et al. 2007 for details). For the
numerical scheme, we truncate the intervals −∞ <x < ∞ and 0 � y < ∞ to x1 � x � xN ,
and y1 � y � yM and introduce the mesh points xk = (k − 1)�x, k = 1, . . . , N and
yj = (j −1)�y, j = 1, . . . , M . The 5NM unknowns are the values of ζx, ζsx

, φ1x, φ2x, φsx

at the mesh points. The integrals and the Bernoulli equation are evaluated at the points
(xk+1/2, yj ), k = 1, . . . , N − 1, j = 1, . . . , M so we have 5(N − 1)M equations. Another
5M equations are obtained from the radiation condition (see Părău & Vanden-Broeck
2002; Părău et al. 2007 for details). The values of ζ and ζs are obtained by integrating
ζx and ζsx

with respect to x by the trapezoidal rule. The values of the dependent
variables at midpoints are found by interpolation and the derivatives are calculated
by using finite differences. The 5NM nonlinear equations are solved by a modified
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Figure 3. Dispersion curves F s
h (solid line) and F i

h (dashed lines) in the (kh, Fh)-plane for
R = 0.1 and R = 0.9.

Newton’s method. In most computations, we used N = 50, M = 20, �x = �y = 0.4 or
N = 60, M = 20, �x = �y = 0.2.

2.3. Results

Some insight can be gained by first reviewing the linear theory. Consider travelling
waves with a wavenumber κ =

√
k2 + l2, where k and l are the wavenumber

components along the propagation in the x-direction and y-direction, respectively
(see Lamb 1932, Art. 231). The dispersion relation is then

F 4(1 + R tanh κH ) − F 2 κ

k2
(1 + tanh κH ) +

κ2

k4
(1 − R) tanh κH = 0. (2.12)

Considering only waves travelling along the x-direction (l = 0) and solving the
equation (2.12) we obtain two positive roots for F , corresponding to two possible
systems of waves:

F s =
1√
k
, F i =

1√
k

√
(1 − R) tanh kH

1 + R tanh kH
.

The first solution F s corresponds to the so-called surface-wave mode, since it does
not depend on R and it can be obtained if we consider a single fluid of infinite depth.
The second solution F i corresponds to the so-called internal-wave mode.

We will plot the two solutions. We do it in the (kh, Fh)-plane instead of the
(k, F )-plane, where Fh = U/

√
gh is the Froude number based on the depth h of the

upper-layer thickness and kh the wavenumber non-dimensionalized with h. We should
note that F = Fh

√
H . The two solutions are now

F s
h =

1√
kh

, F i
h =

1√
kh

√
(1 − R) tanh kh

1 + R tanh kh

.

These are plotted in figure 3 for R =0.1 and R = 0.9. We can observe that for a fixed
Fh <F i

h(0) =
√

1 − R, there are transverse waves (i.e. waves travelling in the x-direction
with crests perpendicular to the direction of propagation). These are generated by the
surface-wave mode (solid line) and the interface-wave mode (dashed line). For a fixed
Fh >

√
1 − R there are transverse waves generated only by the surface-wave mode.
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Figure 4. Computed free-surface and interface profiles. The pressure is applied on the
interface and the parameters are F =0.7, R = 0.9, H = 0.7, ε = 1.

Other possible waves are the divergent waves (i.e. having crests diverging from
the pressure support) due to the surface-wave mode and internal-wave mode. The
transverse and divergent waves for each mode are similar to those in the classical
Kelvin wake pattern, which were first described by Lord Kelvin (Thompson 1887).
So each wave-pattern on the interface and on the free surface can be composed of
up to four different wave systems: divergent waves and transverse waves due to the
surface wave mode, and the divergent and transverse waves due to the internal wave
mode.

The numerical scheme was used to calculate solutions for different values of the
Froude number F , density ratio R, the relative thickness of the upper layer H , and
the pressure parameter ε.

First, we will present results with the pressure applied on the interface. A typical
result for the supercritical case, when F >F i(0) =

√
(1 − R)H is shown in figure 4.

The Kelvin wake, with transverse and divergent waves, is visible on the free surface,
whereas on the interface there are only divergent waves. The waves on the free surface
are due to the surface-wave mode, as the internal-wave mode has negligible effect on
it, whereas the waves on the interface are generated by the internal-wave mode.

The accuracy of the solutions has been tested by varying the number of grid points
and the distances �x and �y between grid points (see an example in figure 5). The
upper part of the interface and the free surface, y > 0 is calculated with N = 60,
M = 30, �x = �y = 0.4 and the lower part y < 0 is calculated with N = 60, M = 30,
�x =�y = 0.3. The values of the parameters are the same in both cases (F = 0.7,
R =0.9, H = 1 and ε = 1).

The subcritical case, when there are transverse and divergent waves on both free
surface and interface is presented in figure 6. As in the previous example, the surface-
wave mode affects mainly the free-surface waves, whereas the internal-wave mode
effects mainly the interfacial waves. It can also be observed that the waves generated
by the internal-wave mode are longer than the waves due to the surface-wave mode.
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Figure 5. Profiles of (a) the free surface and of (b) the interface for two different grids: �x =
�y = 0.3 for y < 0 and �x = �y = 0.4 for y > 0. The parameters are F = 0.7, R = 0.9, H = 1.

For some values of parameters, for example, when the relative height H of the
upper layer is small, or when the density ratio R is not so close to 1, we observed the
influence of the surface-wave mode and internal-wave mode on both the free surface
and the interface. In figure 7, this can be observed clearly on the free surface, where,
besides the classical Kelvin wake, there are some divergent waves due to the internal
wave-mode which are not confined to the 38◦ angle. They are out of phase with the
waves on the interface, as the crests on the free surface are exactly over the troughs
on the interface.

For the supercritical case, we were able to compute solutions with the so-called
triple-lobe pattern on the interface, predicted by Tulin & Miloh (1991) and Tulin,
Wang & Yao (1994) using perturbation crossflow theory and approximating the free
surface as a rigid lid. The triple-lobe pattern consists of a sharp peak and two shallow
troughs behind the moving pressure (figure 8). The free surface was present in our
computations.

The influence of the surface-wave mode on the interfacial waves can be observed
when the free surface is replaced by a rigid lid. The numerical scheme is similar to
that derived in Părău et al. (2007), where solitary waves between two semi-infinite
fluids were computed, one difference being the choice of the region of integration
considered for the upper fluid. In this case we replaced the large-radius hemisphere
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Figure 6. (a) Free surface and interface and (b) a contour plot. The parameters are F = 0.6,
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Figure 7. (a) Free surface and (b) interface. The parameters are F = 0.6, R =0.5, H = 0.5.
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Figure 8. (a) The interface. (b) Transverse sections of the interface. The parameters are
F = 0.7, R = 0.9, H = 0.5.

with a large-radius cylinder, the upper face being the reflection of the interface in
the rigid lid. In figure 9 we compared the interfacial waves for the two cases. The
centrelines in the x-direction are presented for the solution with a rigid lid ζlid and
for the solution with a free surface ζ . If we compare the centreline of the free surface
ζs with the difference between those two, it can be observed that the small waves on
the interface ζ are generated by the free-surface mode.

We can apply the pressure on the free surface instead of the interface. In the
cases presented here, in figure 10, the surface-wave mode dominated on both
the free surface and the interface. As we increase the height H of the upper layer, the
amplitude of the interfacial waves decreases; the free-surface waves remain almost
unchanged.

For R = 0.5, we can find solutions where the coupling effect of the surface-wave
mode and internal-wave mode is visible on both surfaces (see figure 11).
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Figure 9. (a) Interface profile with a free surface for y < 0 and with a rigid lid on top for
y > 0. (b) Centrelines at y = 0 in x-direction. The parameters are F = 0.7, R = 0.9, H = 0.3.

3. Gravity–capillary interfacial solitary waves
We are interested in finding fully localized gravity–capillary interfacial solitary

waves when the upper fluid is covered by a rigid lid. The dynamical condition (2.3)
at the interface z = ζ (x, y) becomes

1
2
ρ1

(
Φ2

1x + Φ2
1y + Φ2

1z

)
− 1

2
ρ2

(
Φ2

2x + Φ2
2y + Φ2

2z

)
+ (ρ1 − ρ2)gζ

− T

⎡
⎣ ζx√

1 + ζ 2
x + ζ 2

y

⎤
⎦

x

− T

⎡
⎣ ζy√

1 + ζ 2
x + ζ 2

y

⎤
⎦

y

= 1
2
(ρ1 − ρ2)U

2, (3.1)

where U is now the phase speed of the wave.
Kim & Akylas (2006, equation (3.1)) have derived a weakly nonlinear model

equation for gravity–capillary interfacial waves in this case (two-dimensional Benjamin
equation), when the interfacial tension T is large and ρ1 ≈ ρ2:

(−ζx + (ζ 2)x − 2γ H{ζxx} + ζxxx)x − ζyy = 0,

where γ 2 = 1 − R/4R2βF 2, β = T/ρ1hU 2, F 2 =U 2/gh and H is the Hilbert transform.
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Figure 11. (a) The free surface and (b) the interface, when the pressure distribution is at the
free surface. The parameters are F = 0.5, R = 0.5, H = 0.5.

The phase-speed of the waves satisfying this equation has a minimum. In the
neighbourhood of this minimum, Kim & Akylas (2006) have used an asymptotic
method to show that the envelope of these waves satisfies an elliptic–elliptic Davey–
Stewartson (or Benney–Roskes) system. By solving these equations numerically, they
were able to find three-dimensional fully localized solitary-wave solutions. We should
mention that a similar Davey–Stewartson system was derived by a weakly nonlinear
method by Kim & Akylas (2005) for free-surface gravity–capillary waves in finite
depth, which also admits fully localized solitary-wave solutions.
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Figure 12. (a) An elevation gravity–capillary interfacial solitary wave. (b) Centreline sections
in the x- and y-directions. The parameters are F = 0.76, β = 1, R =0.5.
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Figure 13. (a) A depression gravity–capillary interfacial solitary wave. (b) Centreline
sections in the x- and y-directions. The parameters are F = 0.75, β = 1, R = 0.5.

We consider now the linear dispersion relation, for travelling waves in the x-
direction, for the full interfacial equations (see Benjamin 1992):

1 − R + βF 2k2

|k| + Rk coth k
− F 2 = 0.

If k = k0 is a double root of this equation, it corresponds to a phase-speed minimum
(see Calvo & Akylas 2003). We have computed three-dimensional fully localized
solitary waves for k near k0 for the full nonlinear equations, to confirm the weakly
nonlinear results. The numerical procedure used is similar to that described in § 2, the
higher-order derivatives that appear are treated as in the free-surface case (see Părău
et al. 2005a). The numerical results shown below were obtained with N = M = 40,
�x =�y = 0.8.

There are two families of fully localized solitary waves which bifurcate from a
two-dimensional periodic wave. We present an example from each family: one family
has a central elevation (see figure 12), the other has a central depression (see figure 13)
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at x = y =0. Similar to the free-surface problem discussed in Părău et al. (2005a),
the waves have decaying oscillations in the direction of propagation and monotonic
decay perpendicular to the direction of propagation. We also observed that, unlike
the free-surface waves, the interfacial waves have shallow troughs and tall crests.
A similar observation was made for the two-dimensional case in Calvo & Akylas
(2003). The branch of solutions can be followed numerically far from the minimum
phase-speed, which, for fixed β = 1 and R = 0.5, is found at Fc = 0.79.

4. Conclusions
We have presented two different types of solution for interfacial flows. First we

have calculated three-dimensional gravity waves generated by moving pressures in
two-layer fluid configurations, with a free surface. The full nonlinear problem was
solved numerically and previous linear and weakly nonlinear results were confirmed
and extended. Secondly, we have computed fully localized gravity–capillary interfacial
solitary waves near the minimum phase-speed, when the free surface is replaced by a
rigid lid. The solutions found confirm the results of Kim & Akylas (2006) who used
a weakly nonlinear model.

This work was supported by EPSRC, under Grant GR/S47786/01 and the National
Science Foundation.
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